Physicists at the Oxford Clarendon Laboratory have developed a highly precise quantum ‘Fredkin gate’, a building-block required to make a quantum computer, bringing us closer to making this theoretical super-computer a reality.

A quantum computer is a hypothesised, incredibly powerful machine capable of performing many large calculations simultaneously, in contrast to the desktops we are familiar with which compute far fewer at a time. It would make use of ‘qubits’, the quantum analogue of the digital bits we use today.

In traditional computing, ‘bits’ are units of information which can take the value 0 (‘off’) or 1 (‘on’) and which can be strung together to encode ‘words’. Performing a calculation involves electrical signals passing through ‘logic gates’ which change bits from 1 to 0 and from 0 to 1, acting as ‘on-off’ switches. With a quantum computer, however, the qubits make use of the quantum states of sub-atomic particles to store information. The strange quantum behaviour of such particles means that, as well as taking the value 0 and 1, the qubit can also exist in a third, superposed state – effectively existing as both 0 and 1.

The Oxford researchers have increased the precision of a quantum version of a three-bit logic gate known as a Fredkin gate to 99.9%, exceeding the theoretical threshold required for the manufacture of a quantum computer. The work makes use of a quantum-phenomenon known as ‘entanglement’: if something happens to one of a pair of entangled particles, the other particle is instantaneously and simultaneously affected, no matter how far away it is. Einstein called this intertwining of fates ‘spooky action at a distance’.

There remains much work to be done before quantum computers become a genuine possibility, but the viability of this crucial building-block is an encouraging step.

“To put this in context,”, comments co-author Prof David Lucas, “Quantum theory says that – as far as anyone has found so far – you simply can’t build a quantum computer at all if the precision drops below about 99%. At the 99.9% level you can build a quantum computer in theory, but in practice it could very difficult and thus enormously expensive. If, in the future, a precision of 99.99% can be attained, the prospects look a lot more favourable.”

Nonetheless this achievement is “another important milestone on the road to developing a quantum computer.”

Research paper: High Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits, C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and D. M. Lucas, Phys. Rev. Lett. 117, 060504, 4 August 2016

For more science content, please see Cherwell’s sister publication Bang!, at http://www.bangscience.org


For Cherwell, maintaining editorial independence is vital. We are run entirely by and for students. To ensure independence, we receive no funding from the University and are reliant on obtaining other income, such as advertisements. Due to the current global situation, such sources are being limited significantly and we anticipate a tough time ahead – for us and fellow student journalists across the country.

So, if you can, please consider donating. We really appreciate any support you’re able to provide; it’ll all go towards helping with our running costs. Even if you can't support us monetarily, please consider sharing articles with friends, families, colleagues - it all helps!

Thank you!